首页> 外文OA文献 >Variants of the LLL Algorithm in Digital Communications: Complexity Analysis and Fixed-Complexity Implementation
【2h】

Variants of the LLL Algorithm in Digital Communications: Complexity Analysis and Fixed-Complexity Implementation

机译:数字通信中LLL算法的变体:复杂性   分析和固定复杂性实施

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Lenstra-Lenstra-Lov\'asz (LLL) algorithm is the most practical latticereduction algorithm in digital communications. In this paper, several variantsof the LLL algorithm with either lower theoretic complexity or fixed-complexityimplementation are proposed and/or analyzed. Firstly, the $O(n^4\log n)$theoretic average complexity of the standard LLL algorithm under the model ofi.i.d. complex normal distribution is derived. Then, the use of effective LLLreduction for lattice decoding is presented, where size reduction is onlyperformed for pairs of consecutive basis vectors. Its average complexity isshown to be $O(n^3\log n)$, which is an order lower than previously thought. Toaddress the issue of variable complexity of standard LLL, two fixed-complexityapproximations of LLL are proposed. One is fixed-complexity effective LLL,while the other is fixed-complexity LLL with deep insertion, which is closelyrelated to the well known V-BLAST algorithm. Such fixed-complexity structuresare much desirable in hardware implementation since they allow straightforwardconstant-throughput implementation.
机译:Lenstra-Lenstra-Lov'asz(LLL)算法是数字通信中最实用的晶格简化算法。本文提出和/或分析了具有较低理论复杂度或固定复杂度实现的LLL算法的几种变体。首先,在i.i.d模型下,标准LLL算法的$ O(n ^ 4 \ log n)$理论平均复杂度。推导复杂的正态分布。然后,提出了将有效的LLL减少用于晶格解码的方法,其中仅对成对的连续基向量执行大小减小。它的平均复杂度显示为$ O(n ^ 3 \ log n)$,比以前认为的要低。为了解决标准LLL的可变复杂度问题,提出了两种LLL的固定复杂度近似。一种是固定复杂度有效的LLL,另一种是深度插入的固定复杂度LLL,与众所周知的V-BLAST算法密切相关。在硬件实现中,这种固定复杂性结构非常可取,因为它们允许直接进行恒定吞吐量的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号